Frequency moved undulator
Smilei or EPOCH
Mark the oscillate electrons, and save the field produced by them. Then sparated them from the total electric field and save to a new file.
光波荡器推导
假设平面波激光方向为$\hat k = \frac{\mathbf{k}}{k_L}$,则 $B = \frac{(\hat k \times E)}{c}$,电子在激光场中运动方程写为:
$$
\frac{d}{dt}(\gamma mc \beta) = -e(E + v \times B)
$$
$$
\frac{d}{dt}(\gamma mc \beta) = -e[E + \beta \times (\hat k \times E)] = -e[E + (\beta \cdot E)\hat k - (\beta \cdot \hat k)E]
$$
我们假设激光沿着x方向偏振,$E = E_0 \sin(\omega_Lt − k \cdot x)\hat x$,沿着z方向传播,与z轴呈夹角$\varphi$,波矢$k = k_L(0, -\sin \varphi, +\cos \varphi)$,并且 $\omega_L = ck_L$。运动方程写为:
$$
\frac{d}{dt}(\gamma mc \beta) = -eE_0\sin(ck_Lt - \mathbf{k} \cdot x)[1 - (\hat k \cdot \beta)] = \frac{eE_0}{ck_L}\frac{d}{dt}\cos(ck_Lt - \mathbf{k} \cdot x)
$$
方程表明水平方向动量守恒,通过积分可以很容易得出,
$$
\beta_x = \frac{eE_0}{\gamma mc^2k_L}\cos(ck_Lt - \mathbf{k}\cdot x)
$$
波荡器参数为$K = \frac{eE_0}{mc^2k_L}$,对于Undulator, $K<<1$,$t \approx c/\beta_z$,横向振动速度为$\cos(k_L(1/\overline{\beta}_z - \cos\varphi)z + k_Ly\sin\varphi)$,则波荡器周期为:
$$
\lambda_u \rightarrow \frac{\overline{\beta}_z\lambda_L}{1 - \overline{\beta}_z\cos\varphi}
$$
将波荡器周期和参数K带入波荡器辐射公式,
$$
\frac{\lambda_1(\phi)}{c} = \frac{\lambda_u}{c}[\frac{1 + K^2/(4\gamma^2)}{\beta} - (1 - \frac{\phi^2}{2})] \approx \frac{\lambda_u}{c}\frac{1 + K^2/2 + \gamma^2\phi^2}{2\gamma^2}
$$
同步辐射共振波长为
$$
\lambda = \frac{1 + K^2/2}{2\gamma^2}\frac{\lambda_L}{1 - \overline{\beta}_z\cos\varphi}
$$
当满足$\varphi \rightarrow 0, K << 1$(undulator的假设)时
$$
\lambda \rightarrow \lambda_L
$$
时间收缩效应
假设$t^{‘}$为粒子静止坐标系,则 $1 - \beta(t^{‘})\cos\phi(t^{‘})$ 为时间收缩因子,对于相对论电子,
$$
\beta = \sqrt{1 - \frac{1}{\gamma^2}} \approx 1 - \frac{1}{1\gamma^2}
$$
对于$\gamma >> 1$,$\phi << 1$
$$
1 - \beta \cos\phi \approx \frac{1}{2}(\frac{1}{\gamma^2} + \phi^2)
$$