Frequency moved undulator
Smilei or EPOCH
Mark the oscillate electrons, and save the field produced by them. Then sparated them from the total electric field and save to a new file.
光波荡器推导
假设平面波激光方向为(\hat k = \frac{\mathbf{k}}{k_L}),则 (B = \frac{(\hat k \times E)}{c}),电子在激光场中运动方程写为:
[
\frac{d}{dt}(\gamma mc \beta) = -e(E + v \times B)
]
[
\frac{d}{dt}(\gamma mc \beta) = -e[E + \beta \times (\hat k \times E)] = -e[E + (\beta \cdot E)\hat k - (\beta \cdot \hat k)E]
]
我们假设激光沿着x方向偏振,(E = E_0 \sin(\omega_Lt − k \cdot x)\hat x),沿着z方向传播,与z轴呈夹角(\varphi),波矢(k = k_L(0, -\sin \varphi, +\cos \varphi)),并且 (\omega_L = ck_L)。运动方程写为:
[
\frac{d}{dt}(\gamma mc \beta) = -eE_0\sin(ck_Lt - \mathbf{k} \cdot x)[1 - (\hat k \cdot \beta)] = \frac{eE_0}{ck_L}\frac{d}{dt}\cos(ck_Lt - \mathbf{k} \cdot x)
]
方程表明水平方向动量守恒,通过积分可以很容易得出,
[
\beta_x = \frac{eE_0}{\gamma mc^2k_L}\cos(ck_Lt - \mathbf{k}\cdot x)
]
波荡器参数为(K = \frac{eE_0}{mc^2k_L}),对于Undulator, (K<<1),(t \approx c/\beta_z),横向振动速度为(\cos(k_L(1/\overline{\beta}_z - \cos\varphi)z + k_Ly\sin\varphi)),则波荡器周期为:
[
\lambda_u \rightarrow \frac{\overline{\beta}_z\lambda_L}{1 - \overline{\beta}_z\cos\varphi}
]
将波荡器周期和参数K带入波荡器辐射公式,
[
\frac{\lambda_1(\phi)}{c} = \frac{\lambda_u}{c}[\frac{1 + K^2/(4\gamma^2)}{\beta} - (1 - \frac{\phi^2}{2})] \approx \frac{\lambda_u}{c}\frac{1 + K^2/2 + \gamma^2\phi^2}{2\gamma^2}
]
同步辐射共振波长为
[
\lambda = \frac{1 + K^2/2}{2\gamma^2}\frac{\lambda_L}{1 - \overline{\beta}_z\cos\varphi}
]
当满足(\varphi \rightarrow 0, K << 1)(undulator的假设)时
[
\lambda \rightarrow \lambda_L
]
时间收缩效应
假设(t^{‘})为粒子静止坐标系,则 (1 - \beta(t^{‘})\cos\phi(t^{‘})) 为时间收缩因子,对于相对论电子,
[
\beta = \sqrt{1 - \frac{1}{\gamma^2}} \approx 1 - \frac{1}{1\gamma^2}
]
对于(\gamma >> 1),(\phi << 1)
[
1 - \beta \cos\phi \approx \frac{1}{2}(\frac{1}{\gamma^2} + \phi^2)
]