Frequency moved undulator
Smilei or EPOCH
Mark the oscillate electrons, and save the field produced by them. Then sparated them from the total electric field and save to a new file.
光波荡器推导
假设平面波激光方向为$\hat k = \textbf{k}/k_L$,则 $B = (\hat k \times E)/c$,电子在激光场中运动方程写为:
$\frac{d}{dt}(\gamma mc \beta) = -e(E + v \times B)$
$\frac{d}{dt}(\gamma mc \beta) = -e[E + \beta \times (\hat k \times E)] = -e[E + (\beta \cdot E)\hat k - (\beta \cdot \hat k)E]$
我们假设激光沿着x方向偏振,$E = E_0 sin(\omega_Lt − k \cdot x)\hat x$,沿着z方向传播,与z轴呈夹角$\varphi$,波矢$k = k_L(0, -sin \varphi, +cos \varphi)$,并且 $\omega_L = ck_L$。运动方程写为:
$\frac{d}{dt}(\gamma mc \beta) = -eE_0sin(ck_Lt - \textbf{k} \cdot x)[1 - (\hat k \cdot \beta)] = \frac{eE_0}{ck_L}\frac{d}{dt}cos(ck_Lt - \textbf{k} \cdot x)$
方程表明水平方向动量守恒,通过积分可以很容易得出,
$\beta_x = \frac{eE_0}{\gamma mc^2k_L}cos(ck_Lt - \textbf{k}\cdot x)$
波荡器参数为$K = \frac{eE_0}{mc^2k_L}$,对于Undulator, $K<<1$,$t \approx c/\beta_z$,横向振动速度为$cos(k_L(1/\overline{\beta}_z - cos\varphi)z + k_Lysin\varphi)$,则波荡器周期为:
$\lambda_u \rightarrow \frac{\overline{\beta}_z\lambda_L}{1 - \overline{\beta}_zcos\varphi}$
将波荡器周期和参数K带入波荡器辐射公式,
$\frac{\lambda_1(\phi)}{c} = \frac{\lambda_u}{c}[\frac{1 + K^2/(4\gamma^2)}{\beta} - (1 - \frac{\phi^2}{2})] \approx \frac{\lambda_u}{c}\frac{1 + K^2/2 + \gamma^2\phi^2}{2\gamma^2}$
同步辐射共振波长为
$\lambda = \frac{1 + K^2/2}{2\gamma^2}\frac{\lambda_L}{1 - \overline{\beta}_zcos\varphi}$
当满足$\varphi \rightarrow 0, K << 1(undulator的假设)$时
$\lambda \rightarrow \lambda_L$
时间收缩效应
假设$t^{‘}$为粒子静止坐标系,则 $1 - \beta(t^{‘})cos\phi(t^{‘})$ 为时间收缩因子,对于相对论电子,
$\beta = \sqrt{1 - \frac{1}{\gamma^2}} \approx 1 - \frac{1}{1\gamma^2}$
对于gamma >> 1,$\phi << 1$
$1 - \beta cos\phi \approx \frac{1}{2}(\frac{1}{\gamma^2} + \phi^2)$